Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598725

RESUMO

The t(1;19) translocation, which codes for the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B cell receptor (preBCR+) phenotype. Relapse in E2A-PBX1+ ALL patients frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased shRNA library screening approaches, we identified Bruton's tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, combination of dasatinib with BTK inhibitors (BTKi) (ibrutinib, acalabrutinib or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced PLCG2 and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, reducing particularly CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse E2A-PBX1+/preBCR+ ALL in most of performed assays, and the combination of dasatinib and BTKi is very effective in reducing CNS-infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.

2.
Haematologica ; 109(3): 698-700, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37608775
3.
Nat Cancer ; 4(1): 81-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543907

RESUMO

Individuals with hematologic malignancies are at increased risk for severe coronavirus disease 2019 (COVID-19), yet profound analyses of COVID-19 vaccine-induced immunity are scarce. Here we present an observational study with expanded methodological analysis of a longitudinal, primarily BNT162b2 mRNA-vaccinated cohort of 60 infection-naive individuals with B cell lymphomas and multiple myeloma. We show that many of these individuals, despite markedly lower anti-spike IgG titers, rapidly develop potent infection neutralization capacities against several severe acute respiratory syndrome coronavirus 2 variants of concern (VoCs). The observed increased neutralization capacity per anti-spike antibody unit was paralleled by an early step increase in antibody avidity between the second and third vaccination. All individuals with hematologic malignancies, including those depleted of B cells and individuals with multiple myeloma, exhibited a robust T cell response to peptides derived from the spike protein of VoCs Delta and Omicron (BA.1). Consistently, breakthrough infections were mainly of mild to moderate severity. We conclude that COVID-19 vaccination can induce broad antiviral immunity including ultrapotent neutralizing antibodies with high avidity in different hematologic malignancies.


Assuntos
COVID-19 , Neoplasias Hematológicas , Linfoma de Células B , Mieloma Múltiplo , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Linfócitos T , Anticorpos Neutralizantes , Vacinação
4.
J Cancer Res Clin Oncol ; 148(5): 1045-1055, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35072775

RESUMO

PURPOSE: Multiple myeloma (MM) remains an incurable hematologic malignancy which ultimately develops drug resistance and evades treatment. Despite substantial therapeutic advances over the past years, the clinical failure rate of preclinically promising anti-MM drugs remains substantial. More realistic in vitro models are thus required to better predict clinical efficacy of a preclinically active compound. METHODS: Here, we report on the establishment of a conical agarose 3D co-culture platform for the preclinical propagation of primary MM cells ex vivo. Cell growth was compared to yet established 2D and liquid overlay systems. MM cell lines (MMCL: RPMI-8226, U266, OPM-2) and primary patient specimens were tested. Drug sensitivity was examined by exploring the cytotoxic effect of bortezomib and the deubiquitinase inhibitor auranofin under various conditions. RESULTS: In contrast to 2D and liquid overlay, cell proliferation in the 3D array followed a sigmoidal curve characterized by an initial growth delay but more durable proliferation of MMCL over 12 days of culture. Primary MM specimens did not expand in ex vivo monoculture, but required co-culture support by a human stromal cell line (HS-5, MSP-1). HS-5 induced a > fivefold increase in cluster volume and maintained long-term viability of primary MM cells for up to 21 days. Bortezomib and auranofin induced less cytotoxicity under 3D vs. 2D condition and in co- vs. monoculture, respectively. CONCLUSIONS: This study introduces a novel model that is capable of long-term propagation and drug testing of primary MM specimens ex vivo overcoming some of the pitfalls of currently available in vitro models.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Auranofina/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Mieloma Múltiplo/patologia
5.
Blood ; 138(12): 1067-1080, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34115113

RESUMO

Acute myeloid leukemia (AML) has a poor prognosis under the current standard of care. In recent years, venetoclax, a BCL-2 inhibitor, was approved to treat patients who are ineligible for intensive induction chemotherapy. However, complete remission rates with venetoclax-based therapies are hampered by minimal residual disease (MRD) in a proportion of patients, leading to relapse. MRD is a result of leukemic stem cells being retained in bone marrow protective environments; activation of the CXCL12-CXCR4 pathway was shown to be relevant to this process. An important role is also played by cell adhesion molecules such as CD44, which has been shown to be crucial for the development of AML. Here we show that CD44 is involved in CXCL12 promotion of resistance to venetoclax-induced apoptosis in human AML cell lines and AML patient samples, which could be abrogated by CD44 knock down, knockout, or blocking with an anti-CD44 antibody. Split-Venus bimolecular fluorescence complementation showed that CD44 and CXCR4 physically associate at the cell membrane upon CXCL12 induction. In the venetoclax-resistant OCI-AML3 cell line, CXCL12 promoted an increase in the proportion of cells expressing high levels of embryonic stem cell core transcription factors (ESC-TFs: Sox2, Oct4, Nanog) abrogated by CD44 knockdown. This ESC-TF-expressing subpopulation which could be selected by venetoclax treatment, exhibited a basally enhanced resistance to apoptosis and expressed higher levels of CD44. Finally, we developed a novel AML xenograft model in zebrafish, which showed that CD44 knockout sensitizes OCI-AML3 cells to venetoclax treatment in vivo. Our study shows that CD44 is a potential molecular target for sensitizing AML cells to venetoclax-based therapies.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Quimiocina CXCL12 , Receptores de Hialuronatos , Leucemia Mieloide Aguda , Mutação com Perda de Função , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Tumorais Cultivadas
6.
Haematologica ; 106(8): 2102-2113, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616529

RESUMO

Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors of progenitor cell adhesion in bone marrow (BM). Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML BM samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent from VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. In further consequence, the increased adhesion on VCAM-1 allowed AML cells to strongly bind stromal cells. Thereby VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, supporting AML cell retention in the supportive BM microenvironment.


Assuntos
Integrina alfa4beta1 , Leucemia Mieloide Aguda , Medula Óssea , Adesão Celular , Humanos , Receptores de Hialuronatos/genética , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/genética
7.
Clin Cancer Res ; 25(6): 1901-1912, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487125

RESUMO

PURPOSE: Chronic lymphocytic leukemia (CLL) pathophysiology is characterized by a complex crosstalk of tumor cells with the microenvironment. In this regard, NF-κB signaling is considered as important signaling axis, with a variety of key molecules aberrantly expressed or genetically altered in patients with CLL. One of these molecules is BIRC3 (cIAP2), a central regulator of noncanonical NF-κB signaling that serves as pathway brake in the absence of microenvironmental signals. However, the contribution of BIRC3 expression to CLL progression and potential therapeutic implications is unknown.Experimental Design: We analyzed the role of BIRC3 mRNA expression in primary CLL samples in correlation to clinical datasets and used ex vivo assays to investigate functional consequences on the level of NF-κB signaling and downstream target gene regulation. For proof-of-principle experiments, we used genetically modified cell lines. RESULTS: We demonstrate that patients with CLL with low BIRC3 expression experience a more rapid disease progression, which coincides with an enhanced activation of canonical NF-κB target genes evidenced by an increased p65/Rel-B nuclear translocation ratio. As a consequence of enhanced canonical NF-κB target gene activation, both anti- and proapoptotic Bcl-2 family members were upregulated in BIRC3low primary CLL cells, which was associated with higher sensitivity to venetoclax treatment in vitro. CONCLUSIONS: Here we show the impact of BIRC3 expression in CLL disease progression in the absence of BIRC3 mutations and show altered canonical NF-κB target gene activation with therapeutic implications.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/patologia , NF-kappa B/metabolismo , Sulfonamidas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus/genética , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Técnicas de Cocultura , Conjuntos de Dados como Assunto , Progressão da Doença , Feminino , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3 , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/genética , Sulfonamidas/uso terapêutico , Resultado do Tratamento , Regulação para Cima
8.
Eur J Cancer ; 93: 69-78, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477794

RESUMO

BACKGROUND: Tumour heterogeneity and clonal evolution within a cancer patient are deemed responsible for relapse in malignancies and present challenges to the principles of targeted therapy, for which treatment modality is often decided based on the molecular pathology of the primary tumour. Nevertheless, the clonal architecture in distant relapse of head and neck cancer is fairly unknown. PATIENTS AND METHODS: For this project, we analysed a cohort of 386 patients within the Austrian Registry of head and neck cancer. We identified 26 patients with material from the primary tumour, the distant metastasis after curative first-line treatment and a germline sample for analysis of clonal evolution. After pathological analyses, these samples were analysed using a targeted massively parallel sequencing (MPS) panel of 257 genes known to be recurrently mutated in head and neck cancer plus a genome-wide SNP-set. RESULTS: Despite histological diagnosis of distant metastasis, no corresponding mutation in the supposed metastases was found in two of 23 (8.6%) evaluable patients suggesting a primary tumour of the lung instead of a distant metastasis of head and neck cancer. We observed a branched pattern of evolution in 31.6% of the analysed patients. This pattern was associated with a shorter time to distant metastasis, compared with a pattern of punctuated evolution. Structural genomic changes over time were also present in 7 of 12 (60%) evaluable patients with metachronous metastases. CONCLUSION: Targeted MPS demonstrated substantial heterogeneity at the time of diagnosis and a complex pattern of evolution during disease progression in head and neck cancer. Copy number analyses revealed additional changes that were not detected by mutational analyses. Mutational and structural changes contribute to tumour heterogeneity at diagnosis and progression.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/secundário , Evolução Clonal , Neoplasias de Cabeça e Pescoço/patologia , Recidiva Local de Neoplasia/patologia , Áustria , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Terapia Combinada , Progressão da Doença , Feminino , Seguimentos , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
9.
Blood ; 131(12): 1337-1349, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29352038

RESUMO

Chronic lymphocytic leukemia (CLL) outgrowth depends on signals from the microenvironment. We have previously found that in vitro reconstitution of this microenvironment induces specific variant isoforms of the adhesion molecule CD44, which confer human CLL with high affinity to hyaluronan (HA). Here, we determined the in vivo contribution of standard CD44 and its variants to leukemic B-cell homing and proliferation in Tcl1 transgenic mice with a B-cell-specific CD44 deficiency. In these mice, leukemia onset was delayed and leukemic infiltration of spleen, liver, and lungs, but not of bone marrow, was decreased. Competitive transplantation revealed that CLL homing to spleen and bone marrow required functional CD44. Notably, enrichment of CD44v6 variants particularly in spleen enhanced CLL engraftment and proliferation, along with increased HA binding. We recapitulated CD44v6 induction in the human disease and revealed the involvement of MAPK and NF-κB signaling upon CD40 ligand and B-cell receptor stimulation by in vitro inhibition experiments and chromatin immunoprecipitation assays. The investigation of downstream signaling after CD44v6-HA engagement uncovered the activation of extracellular signal-regulated kinase and p65. Consequently, anti-CD44v6 treatment reduced leukemic cell proliferation in vitro in human and mouse, confirming the general nature of the findings. In summary, we propose a CD44-NF-κB-CD44v6 circuit in CLL, allowing tumor cells to gain HA binding capacity and supporting their proliferation.


Assuntos
Proliferação de Células , Receptores de Hialuronatos/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Microambiente Tumoral , Animais , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/genética , Ácido Hialurônico/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Baço/metabolismo , Baço/patologia
11.
Cell Commun Signal ; 15(1): 8, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122581

RESUMO

Treatment of acute myeloid leukemia (AML), an aggressive and heterogeneous hematological malignancy, remains a challenge. Despite advances in our understanding of the complex genetics and biology of AML pathophysiology, these findings have been translated to the clinic with only limited success, and poor outcomes persist for the majority of patients. Thus, novel treatment strategies are clearly needed for achieving deeper and prolonged remissions and for avoiding the development of resistance. Due to its profound role in (cancer) stem cell biology and differentiation, the Hedgehog (HH)/Glioma-associated Oncogene Homolog (GLI) signaling pathway may be an attractive novel therapeutic target in AML. In this review, we aim to provide a critical and concise overview of the currently known potential and challenges of HH/GLI targeting. We describe the biological role of the HH/GLI pathway in AML pathophysiology. We specifically focus on ways of targeting non-canonical HH/GLI signaling in AML, particularly in combination with standard treatment regimens, which may overcome some hurdles observed with approved HH pathway inhibitors in solid tumors.


Assuntos
Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
12.
Ann Hematol ; 95(12): 1979-1988, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27542958

RESUMO

Dysregulation of B cell receptor (BCR) signalling is a hallmark of chronic lymphocytic leukaemia (CLL) pathology, and targeting BCR pathway kinases has brought great therapeutic advances. Activation of the BCR in lymphoid organs has been associated with CLL cell proliferation and survival, leading to progressive disease. While these responses are mediated predominantly by IgM, the role of IgD is less clear. Seeking to uncover downstream consequences of individual and combined stimulation of the two BCR isotypes, we found an amplification of IgD expression and IgD-mediated calcium signalling by previous stimulation of IgM in CLL. Furthermore, no heterologous downmodulation of the isotypes, as observed in healthy donors, was present. Only marginal downregulation of the expression of various chemokine receptors by α-IgM and α-IgD stimulation was found as compared to normal B cells. Consistently, calcium responses of CLL cells to different chemokines were only weakly affected by preceding BCR activation. In contrast, migration towards the two homeostatic chemokines CXCL12 and CCL21 was differentially regulated by IgM and IgD. While IgM activation reduced migration of CLL cells towards CXCL12, but not CCL21, IgD activation predominantly impacted on CCL21 but not CXCL12-mediated chemotaxis. This indicates that the preference for one chemokine over the other may depend on the functional presence of the two isotypes in CLL. Inhibitors against the kinases Syk, Lyn, and Btk antagonised both BCR- and chemokine-induced calcium signals.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Quimiocina CCL21/metabolismo , Quimiocina CXCL12/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Quimiocina CCL21/agonistas , Quimiocina CXCL12/agonistas , Quimiocinas/agonistas , Quimiocinas/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Receptores de Antígenos de Linfócitos B/agonistas , Células Tumorais Cultivadas
13.
Oncotarget ; 7(32): 51494-51502, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27285986

RESUMO

Little information is available about the role of certain mutations for clonal evolution and the clinical outcome during relapse in diffuse large B-cell lymphoma (DLBCL). Therefore, we analyzed formalin-fixed-paraffin-embedded tumor samples from first diagnosis, relapsed or refractory disease from 28 patients using next-generation sequencing of the exons of 104 coding genes. Non-synonymous mutations were present in 74 of the 104 genes tested. Primary tumor samples showed a median of 8 non-synonymous mutations (range: 0-24) with the used gene set. Lower numbers of non-synonymous mutations in the primary tumor were associated with a better median OS compared with higher numbers (28 versus 15 months, p=0.031). We observed three patterns of clonal evolution during relapse of disease: large global change, subclonal selection and no or minimal change possibly suggesting preprogrammed resistance. We conclude that targeted re-sequencing is a feasible and informative approach to characterize the molecular pattern of relapse and it creates novel insights into the role of dynamics of individual genes.


Assuntos
Evolução Clonal/genética , Linfoma Difuso de Grandes Células B/patologia , Taxa de Mutação , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/genética , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Falha de Tratamento , Adulto Jovem
14.
Cancer Res ; 76(8): 2186-96, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26837762

RESUMO

The proliferation of chronic lymphocytic leukemia (CLL) cells requires communication with the lymphoid organ microenvironment. Integrin-linked kinase (ILK) is a multifunctional intracellular adaptor protein that transmits extracellular signals to regulate malignant cell motility, metastasis, and cell-cycle progression, but is poorly characterized in hematologic malignancies. In this study, we investigated the role of ILK in the context of CLL and observed high ILK expression in patient samples, particularly in tumor cells harboring prognostic high-risk markers such as unmutated IGHV genes, high Zap70, or CD38 expression, or a signature of recent proliferation. We also found increased numbers of Ki67 (MKI67)-positive cells in regions of enhanced ILK expression in lymph nodes from CLL patients. Using coculture conditions mimicking the proliferative lymph node microenvironment, we detected a parallel induction of ILK and cyclin D1 (CCND1) expression in CLL cells that was dependent on the activation of NF-κB signaling by soluble TNFα. The newly synthesized ILK protein colocalized to centrosomal structures and was required for correct centrosome clustering and mitotic spindle organization. Furthermore, we established a mouse model of CLL in which B-cell-specific genetic ablation of ILK resulted in decelerated leukemia development due to reduced organ infiltration and proliferation of CLL cells. Collectively, our findings describe a TNFα-NF-κB-mediated mechanism by which ILK expression is induced in the lymph node microenvironment and propose that ILK promotes leukemogenesis by enabling CLL cells to cope with centrosomal defects acquired during malignant transformation. Cancer Res; 76(8); 2186-96. ©2016 AACR.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Tecido Linfoide/enzimologia , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proliferação de Células , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Tecido Linfoide/patologia , Camundongos , Camundongos Transgênicos , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
15.
Haematologica ; 101(3): e99-102, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26589908
17.
Br J Haematol ; 170(4): 515-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25940792

RESUMO

Although chronic lymphocytic leukaemia (CLL) is a B cell malignancy, earlier studies have indicated a role of T cells in tumour growth and disease progression. In particular, the functional silencing of antigen-experienced T cells, called T cell exhaustion, has become implicated in immune evasion in CLL. In this study, we tested whether T cell exhaustion is recapitulated in the TCL1(tg) mouse model for CLL. We show that T cells express high levels of the inhibitory exhaustion markers programmed cell death 1 (PDCD1, also termed PD-1) and lymphocyte-activation gene 3 (LAG3), whereas CLL cells express high levels of CD274 (also termed PD-ligand 1). In addition, the fraction of exhausted T cells increases with CLL progression. Finally, we demonstrate that exhausted T cells are reinvigorated towards CLL cytotoxicity by inhibition of PDCD1/CD274 interaction in vivo. These results suggest that T cell exhaustion contributes to CLL pathogenesis and that interference with PDCD1/CD274 signalling holds high potential for therapeutic approaches.


Assuntos
Regulação Leucêmica da Expressão Gênica/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Transdução de Sinais/genética , Linfócitos T/patologia
20.
Blood ; 123(14): 2181-8, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24501217

RESUMO

Signals from the tumor microenvironment promote the migration, survival, and proliferation of chronic lymphocytic leukemia (CLL) cells. Rho GTPases control various signaling pathways downstream of microenvironmental cues. Here, we analyze the function of Rac1 in the motility and proliferation of CLL cells. We found decreased transcription of the Rac guanine nucleotide exchange factors Tiam1 and Vav1 in unstimulated peripheral blood CLL cells with almost complete loss of Tiam1 but increased transcription of the potential Rac antagonist RhoH. Consistently, stimulation of CLL cells with the chemokine CXCL12 induced RhoA but not Rac1 activation, whereas chemokine-induced CLL cell motility was Rac1-independent. Coculture of CLL cells with activated T cells induced their activation and subsequent proliferation. Here, Tiam1 expression was induced in the malignant cells in line with increased Ki-67 and c-Myc expression. Rac1 or Tiam1 knockdown using siRNA or treatment with the Tiam1/Rac inhibitor NSC-23766 attenuated c-Myc transcription. Furthermore, treatment of CLL cells with NSC-23766 reduced their proliferation. Rac inhibition also antagonized the chemoresistance of activated CLL cells toward fludarabine. Collectively, our data suggest a dynamic regulation of Rac1 function in the CLL microenvironment. Rac inhibition could be of clinical use by selectively interfering with CLL cell proliferation and chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Aminoquinolinas/farmacologia , Animais , Movimento Celular/genética , Células Cultivadas , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Camundongos , Células NIH 3T3 , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...